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Abstract. We have investigated the quantum transport through mesoscopic systems with a toroidal carbon
nanotube coupled with two metal leads (N-TCN-N) threaded with an ac magnetic flux. The energy shifting
takes place by applying the magnetic flux, and this shifting arises from both the dc and ac components of
magnetic flux. The dc magnetic flux φ induces the periodic variation of energy gap Eg of the TCN, and the
ac magnetic flux component always increases the energy gap. As the photon energy is larger than the energy
gap �ω > Eg, the electrons in the valence band can jump to the conductance band at zero temperature,
and the tunneling current appears for eV > Eg/2 + n�ω, (n = 0,±1,±2...). The differential conductance
and tunneling current display clear effect of ac flux by modifying the current oscillation structures. The
photon-assisted tunneling current exhibits stair-like I-V characteristics, and it shows different behaviors
for different TCN systems. The magnitude of the current is suppressed by the applied ac flux. We also
present the time-dependent current evolution, which is contributed by the oscillating current components.

PACS. 73.40.-c Electronic transport in interface structures – 73.63.Fg Nanotubes – 73.61.Wp Fullerenes
and related materials – 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nan-
otubes, and nanocrystals

1 Introduction

Recently, the single-wall carbon nanotubes (SWCNs) has
attracted much attention due to their prospective applica-
tions on the electronic nano-devices. One of the important
properties is the metal-semiconductor transition for differ-
ent structures of SWCN. Because of the specific structure
and electronic properties, we can employ these materials
to study one-dimensional transport, such as those exten-
sively investigated semiconductor quantum wire and hy-
brid device systems [1–8]. The resonant tunneling behavior
in the SWCN based magnetic tunneling junctions as well
as the dynamic conductance in the SWCN system due to
an ac field are also studied [9]. As the two ends of a SWCN
connect to form a closed toroidal carbon nanotube (TCN),
the detailed carbon nanotube (CN) structure takes the
central role for the conducting behavior, since the TCN
is quantized in both of the longitudinal and transverse
directions. The tori proposed are constructed by intro-
ducing a single pentagon-heptagon pair into the perfect
hexagon bonding pattern to connect carbon tubules [10].
The construction based on the C60, and local topologi-
cal structures of positive and negative Gaussian curvature
were obtained theoretically in reference [11]. Haddon pro-
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vided theoretical investigation on the electron properties
of TCN C576, and revealed the quantum nature of quasi-
one-dimensional ring [12]. Martel et al. have fabricated
rings from SWCNs, and they have observed magnetore-
sistance at low temperature [13]. The persistent current
in TCN was investigated to exhibit novel properties due
to the modification of energy structure and energy gap of
TCN by applying the magnetic field [14]. TCN can also be
used as functional electronic devices, such as the switching
and interference devices. The conductance of such a device
can be controlled by adjusting the magnetic flux through
TCN since its energy gap is strongly associated with mag-
netic flux. Latil et al. have studied the persistent current
in carbon nanotube based rings. The case of interacting
nanotori, and the self-interacting coiled nanotubes are an-
alyzed. The rings are not really torii in the usual sense,
but are formed by small bundles of nanotubes. The ring is
closed by means of weakly interacting bonds rather than
covalent bonding [15]. The Aharonov-Bohm-like meso-
scopic transport through a TCN coupled to normal metal-
lic leads (N-TCN-N), and through a hybrid system with
a TCN coupled to normal and superconducting leads (N-
TCN-S) have been investigated to show the resonant and
Andreev tunneling controlled by the magnetic flux [16].

Usually, an electronic device is operated under an ac
electromagnetic field, especially the radio frequency field.
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Therefore, it is interesting to consider the electronic prop-
erties induced by the electromagnetic field. The energy
gap is modified by the applied ac field, and the ac Stark
effect plays an important role in adjusting the electronic
feature of the mesoscopic system [17]. Electrons in the
ac field perturbed systems absorb and emit photons to
form side-band which acts as channels for electron to tun-
nel [18]. Since the TCN is quantized in both the trans-
verse and longitudinal directions, the special quantization
structure causes novel transport behavior. The electronic
structure of TCN and external ac field produce compound
effect in the mesoscopic transport, and we can obtain novel
output characteristics in such systems.

In this paper, we investigate the physical properties of
N-TCN-N threaded with an ac magnetic flux. We assume
that electrons in TCN are affected by the homogeneous
vector potential in the direction along the ring. This vec-
tor potential induces a magnetic flux threading through
the TCN parallel to the axis of the ring. Electrons in
the TCN are driven by the electric field along the ring to
form current. This kind of current is the dynamic current
caused by the ac magnetic flux and the interference behav-
ior of electrons in the ring. As the TCN is coupled to two
metallic leads, the current transporting through the TCN
from the leads is determined by the magnetic flux and the
source-drain bias. The feature of current depends sensi-
tively on the detailed structure of TCN. We are interested
in both the time-averaged and time-dependent tunneling
behaviors, such as the time-averaged current, differential
conductance, and the time-oscillating current evolution.
We employ the nonequilibrium Green’s function (NGF)
technique to derive transport formulas which exhibit the
information of electromagnetic field and structure of TCN.
The numerical calculations are performed to reveal the
tunneling behaviors at zero-temperature. The tunneling
current and differential conductance versus source-drain
bias, magnetic flux, and time are calculated. We make the
comparison between the systems in the presence and ab-
sence of ac magnetic flux. We present the formalism and
derivation of tunneling current in Section 2, and the nu-
merical calculations in Section 3. The concluding remarks
are given in Section 4.

2 Model and formalism

The system is composed of three parts: the right and left
normal metallic leads, and the central TCN. The TCN is
formed by rolling a finite graphite sheet from the origin
to the vectors Rx = m1a1 + m2a2, and Ry = p1a1 + p2a2

simultaneously, where the primitive lattice vectors of the
graphite a1 and a2 are defined as a1 = (31/2a/2,−a/2)
and a2 = (31/2a/2, a/2) in the (ex, ey) coordinates. The
two primitive lattice vectors possess the same magnitude
as a =| a1 |=| a2 |= b× 31/2, where b = 1.44 Å is the C-C
bond length of CNs known to be slightly larger than that
of graphite [19]. The TCN is denoted by (m1, m2; p1, p2) as
convention, and it satisfies the periodic boundary condi-
tions along both of the longitudinal and transverse direc-
tions. We specify that Rx is in the transverse direction and

Fig. 1. The schematic diagram of a TCN coupled to two nor-
mal metal leads N. The TCN is embedded in the two leads
indicating the well coupling of the energy levels of electron in
the TCN to the leads.

Ry in the longitudinal direction. A time-dependent mag-
netic flux φ̃(t) = φ + φ1 sin(ωt) is threading through the
TCN parallel to its axis ez, where φ is a time-independent
magnetic flux, φ1 is the magnitude of ac flux component,
and ω is the angular frequency. In the rotating coordi-
nate system with the base vectors (er, eθ, ez), the time-
dependent magnetic flux φ̃(t) is induced by the spatially
homogeneous electromagnetic vector potential A(t) in the
eθ direction, i.e., A(t) = (Ar, Aθ, Az), with Ar = 0, Az =
0, and Aθ = A0 + Aω sin(ωt). This kind of vector poten-
tial can be realized by applying the time-dependent mag-
netic field in the ez direction as B(t) = Aθez/r, where
r is the distance of the field pointing from the z-axis.
We denote the diameter of CN as dt, and the diameter
of mesoscopic ring as Dt. Two kinds of TCN with highly
symmetric structures are armchair (m, m;−p, p) TCN and
zigzag (m, 0;−p, 2p) TCN. The armchair TCN possesses
the symmetry with armchair structure along the trans-
verse direction and zigzag structure along the longitudi-
nal direction. The zigzag TCN has the structure in both of
the directions being zigzag. The diameters of the armchair
TCN are dt = 3bm/π, and Dt = 31/2bp/π, and the diam-
eters of the zigzag TCN are given by dt = 31/3bm/π, and
Dt = 3bp/π. In the absence of electromagnetic flux, the
armchair TCN is a metal when p = 3ν (type I TCN), while
it is a semiconductor with narrow energy gap as p = 3ν±1
(type II TCN), where ν is an integer. For the zigzag TCN
in the absence of electromagnetic flux, there exists a large
energy gap when m �= 3ν (type III TCN) [14]. We con-
sider the situation that the leads broaden immediately
at the connections to the TCN, and the leads are large
enough to be considered as equilibrium electron reser-
voirs. The diameter ratio of the nanotube dt to the di-
ameter Dt of mesoscopic ring is much smaller than 1, i.e.,
κ = dt/Dt � 1. We assume that the TCN is well coupled
to the normal metal leads shown as in Figure 1. This geom-
etry of system implies the well coupling of the energy levels
of electron in the TCN to the leads. It also signifies that
the wave-functions resided in the inner and outer circum-
ferences of TCN roughly couple to the leads equally. The
tight-binding model is employed for calculating electron
transport through the CN systems where the Coulomb
interaction is neglected [20,21]. The tight-binding calcula-
tion is relatively simple compared with the first principles
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calculation [22]. On the other hand, the theoretical pre-
diction [23,24] of Luttinger liquid behavior in a SWCN at
low energy scale has been verified in the transport experi-
ment [25]. However, the tight-binding calculation can pro-
vide main properties of CN systems, such as the electron
structure, local density of state, and electron transport.
Many scanning tunneling spectroscopic results are fully
interpreted in terms of independent electrons model [26].
We are interested in the mesoscopic transport through the
TCN systems responded by an external ac field. We take
the tight-binding approximation to describe the TCN by
avoiding the complexity of involving the Coulomb inter-
action.

The central TCN is described by the tight-binding
Hamiltonian, and the two normal metal leads are de-
scribed by the free electron grand canonical ensembles.
In the diagonalized representation of TCN, the electronic
properties can be determined by the total Hamiltonian
of the system which is the summation of the three sub-
Hamiltonians and the tunneling interaction term

H =
∑
γkσ

εγka†
γ,kσaγ,kσ +

∑
j�δσ

E�j,δ(t)c
†
δσ,j�cδσ,j�

+
∑
γkσ

∑
j�δ

[R∗
γδ,j�(k)c†δσ,j�aγ,kσ + h.c.], (1)

where a†
γ,kσ (aγ,kσ), and c†δσ,j� (cδσ,j�) are the creation

(annihilation) operators of electron in the two leads and
TCN, respectively, with γ ∈ {L, R}. Rγδ,j�(k) is interac-
tion strength of electrons between the γth lead and TCN.
We take the chemical potential of the right lead as the
reference of energy measurement to ensure µL−µR = eV ,
where V is the voltage between the two leads. The spin
σ has the values as σ = +1, and −1 corresponding to
the notations ↑ and ↓ respectively in the subscripts of
equations. E�j,δ(t) is the energy of the TCN. The en-
ergy of TCN is intimately associated with the structure of
the TCN. However, in the presence of ac magnetic flux,
the energy oscillates with external magnetic flux φ̃(t). The
time-dependent energy can be derived by making gauge
transformation and by employing the periodic boundary
condition. The time-dependent energy of the armchair
TCN can be found in the tight-binding approximation as

E�j,δ(t) = δγ0

{
1 + 4 cos2[β�(t)]

+ 4 cos[β�(t)] cos
(

jπ

m

) }1/2

. (2)

The time-dependent energy of zigzag TCN is given simi-
larly by taking tight-binding approximation

E�j,δ(t) = δγ0

{
1 + 4 cos2

(
jπ

m

)

+ 4 cos[β�(t)] cos
(

jπ

m

) }1/2

. (3)

In the energy formulas (2) and (3), β�(t) = π(� +
φ̃(t)/φ0)/p, where j = 1, 2, ..., m; � = 1, 2, ..., 2p; δ = ±,
γ0 = 3.033 eV, and φ0 = h/e is the flux quantum. j and
� are the quantum numbers of energy describing the trans-
verse and longitudinal quantization of the TCN, respec-
tively. The upper half of the energy dispersion curves
describes the π∗-energy anti-bonding band (unoccupied
state), and the lower half of the energy dispersion curves
is the π-energy bonding band (occupied state).

The time-dependent retarded Green’s function of the
isolated TCN in the response of ac flux is defined by

gr
δj�(t, t

′) = − i

�
θ(t − t′) exp

{
− i

�

∫ t

t′
E�j,δ(τ)dτ

}
. (4)

This Green’s function depends on both t and t′, and it can
not be written as the form of time difference in general.
However, it can be expressed by

gr
δj�(t, t

′) = − i

�
θ(t − t′)

∑
mn

F
(mn)
�j,δ (φ, φ1)

× exp
{
− i

�
ε�j,δ(φ, φ1)(t − t′) − i(nt − mt′)ω

}
, (5)

(for n, m = 0,±1 ± 2, ...), where ε�j,δ is the quasi-energy
of TCN defined by taking the time average in the period
T over the energy E�j,δ(τ) as

ε�j,δ(φ, φ1) =
1
T

∫ T

0

E�j,δ(τ)dτ. (6)

The function F
(mn)
�j,δ is defined by the two-time Fourier

transformation as

exp{− i

�

∫ t

t′
[E�j,δ(τ) − ε�j,δ(φ, φ1)]dτ}

=
∑
mn

F
(mn)
�j,δ (φ, φ1) exp[−i(nt− mt′)ω]. (7)

Expanding the time-dependent energy formulas given in
equations (2, 3) around the time-averaged quasi-energy
ε�j,δ(φ, φ1) to the first-order approximation, and employ-
ing the relation

exp[±iΛ cos(ωt)] =
∑

n

(±i)nJn(Λ) exp(±inωt), (8)

we obtain the leading terms of F
(mn)
�j,δ for the TCNs. In

fact, they can be determined by the Bessel function of the
first kind Jn(Λ) as

F
(mn)
�j,δ (φ, φ1) =

(−1)nin+mJn[Λ�j,δ(φ, φ1)]Jm[Λ�j,δ(φ, φ1)]. (9)

The argument of the Bessel function Λ�j,δ(φ, φ1) is asso-
ciated with the detailed structure of TCN. For the arm-
chair TCN, we have the argument of Bessel function

Λ�j,δ(φ, φ1) =

δ
4γ0

�ω
J1(α1)

[
cos

(
πj

m

)
sin(β�) + J0(α1) sin (2β�)

]
,
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and for the zigzag TCN, we obtain the argument of Bessel
function as

Λ�j,δ(φ, φ1) = δ
4γ0

�ω
J1(α1) cos

(
πj

m

)
sin(β�),

where β� = π(� + φ/φ0)/p, and α1 = πφ1/pφ0. The func-
tion F

(mn)
�j,δ modifies the magnitude of tunneling current

in each channel of the quantum system in the presence of
ac flux. This reveals additional feature of the mesoscopic
transport, which is strongly associated with the structure
of central region. As α1 → 0, F

(mn)
�j,δ → 1, which is the

situation in the absence of ac flux.
The mesoscopic transport under the ac fields can be

derived by NGF technique, and the detailed derivation of
current formula can be found in references [27–29]. The
time-dependent tunneling current of the γth lead is deter-
mined by the current formula

Iγ(t) = 2eRe
∑
δj�σ

∫
dt1[Gr

δj�(t, t1)Σ
<
γ,δj�(t1, t)

+ G<
δj�(t, t1)Σ

a
γ,δj�(t1 , t)], (10)

where ΣX
γ,δj�(t1, t2) is the self-energy of the γth lead de-

fined by ΣX
γ,δj�(t, t

′) =
∑

k | Rγδ,j� |2 gX
γ,kσ(t, t′), (X ∈

{r, a, <}). In the self-energy, gX
γ,kσ(t, t′) is the Green’s

function of the γth lead.
The time-dependent Green’s function of the coupled

TCN can be expanded by

GX
δj�(t, t

′) =
∑
mn

F
(mn)
�j,δ (φ, φ1)e−iω(nt−mt′)G̃X

δj�(t, t
′).

(11)
Here the Green’s function G̃X

δj�(t, t
′) is associated with the

system in the absence of ac flux. The retarded Green’s
function is determined by the Dyson equation

G̃r
δj�(t, t

′) = g̃r
δj�(t, t

′) +
∫∫

dt1dt2g̃
r
δj�(t, t1)

× Σr
δj�(t1, t2)G̃

r
δj�(t2, t

′), (12)

where g̃r
δj�(t, t

′) is the retarded Green’s function of the iso-
lated TCN in the absence of ac flux. The Keldysh Green’s
function of the coupled TCN is given by the equation [27]

G̃<
δj�(t, t

′) =
∫∫

dt1dt2G̃
r
δj�(t, t1)

× Σ<
δj�(t1, t2)G̃

a
δj�(t2, t

′). (13)

The self-energy above is defined by summing the self-
energies of the leads as ΣX

δj�(t1, t2) =
∑

γ ΣX
γ,δj�(t1, t2).

2.1 Time-averaged mesoscopic transport

The time-averaged tunneling current is related to the
Green’s function of the TCN expressed by the pseudo-
equilibrium state. For this situation, the diagonal ele-
ments of the function F

(nm)
�j,δ = F

(n)
�j,δ = J2

n[Λ�j,δ(φ, φ1)]

(for m = n) contribute to the Green’s function

gr
δj�(t, t

′) = − i

�
θ(t − t′)

∑
n

F
(n)
�j,δ(φ, φ1)

× exp
{
− i

�
[ε�j,δ(φ, φ1) + n�ω](t − t′)

}
. (14)

The Fourier transformed version of the Green’s function
above is then expressed as

gr
δj�(ε) =

∑
n

F
(n)
�j,δ(φ, φ1)g̃r

δj�(ε − n�ω), (15)

where g̃r
δj�(ε) is the Fourier transformation defined by

g̃r
δj�(ε) =

1
ε − ε�j,δ(φ, φ1) + iη

. (16)

with η → 0. The tunneling current formula can be
derived from the Heisenberg equation and continuity
equation by employing the NGF technique. The time-
averaged current in the γth lead can be expressed as the
Landauer-Büttiker-like formula [30]

Iγ =
e

h

∑
nσ

∑
γ �=β

∫
dεTγβ,n(ε)[fγ(ε) − fβ(ε)], (17)

where Tγβ,n(ε) =
∑

�jδ Γγ,δj�(ε)Γβ,δj�(ε)F
(n)
�j,δ(φ, φ1) ×

|G̃r
δj�(ε−n�ω)|2 is the transmission coefficient representing

the electron tunneling from the γth lead to the βth lead. It
possesses the symmetry property about leads as Tγβ(ε) =
Tβγ(ε). This means that the electron transporting from the
βth lead to the γth lead is equal to the transporting from
the γth lead to the βth lead. Γγ,δj�(ε) is the line-width
defined by Γγ,δj�(ε) = 2π

∑
k | Rγδ,j� |2 δ(ε − εγk). The

function fγ(ε) is the Fermi distribution function of the γth
lead. We consider the wide-band limit for the leads, which
means that the line-widths are independent on the energy
levels. For this situation, Γγ,δj�(ε) = Γγ , and G̃r

δj�(ε) is
the pseudo-equilibrium retarded Green’s function of the
coupled TCN determined by

G̃r
δj�(ε) =

1
ε − ε�j,δ(φ, φ1) + iΓ

. (18)

where Γ = (ΓL + ΓR)/2.
The electron band structure and transport property

of this TCN system are mainly determined by the π va-
lence electrons. Tight-binding calculation for the π elec-
trons is proven to be in good agreement with experiment.
It can provide important insights for understanding the
electronic structure of π energy level in the CN system. As
the external electromagnetic field is applied to the system,
the energy spectrum is modified considerably. By taking
time-average over the time-dependent energy from equa-
tion (6), the calculation reveals that the quasi-energy of
the armchair TCN in the tight-binding approximation is
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given as [17]

ε�j,δ(φ, φ1) = δγ0

{
1 + 4

∞∑
n=−∞

[
J2

2n(α1) cos2(β�)

+ J2
2n+1(α1) sin2(β�)

]
+ 4J0(α1) cos(β�) cos

(
jπ

m

) }1/2

.

(19)

The quasi-energy of the zigzag TCN is given similarly by
taking tight-binding approximation

ε�j,δ(φ, φ1) = δγ0

{
1 + 4 cos2

(
jπ

m

)

+ 4J0(α1) cos(β�) cos
(

jπ

m

) }1/2

. (20)

In equations (19, 20), β� = π(� + φ/φ0)/p, α1 = πφ1/pφ0,
where j = 1, 2, ..., m; � = 1, 2, ..., 2p. We have denoted that
δ = ±, which indicates the upper half and lower half of the
energy dispersion curves. The highest occupied state and
the lowest unoccupied state meet with each other at the
Fermi energy EF in the absence of external magnetic field
for the armchair type I TCN, while it possesses a small
energy gap for the type II TCN. Due to the symmetric
structure, the Fermi energy is located at EF = 0. As the
external electromagnetic field is applied to the TCN, the
energy gap changes, and it is intimately related to the
magnitude of field. Obviously, the quasi-energy formulas
equations (19, 20) reduce to the energy formulas of TCN
given in reference (14) by letting α1 → 0. This can be seen
by noticing that Jn(0) = δn0.

We take the potential of right lead as the reference by
setting µR = 0 in the formula. At zero temperature, the
tunneling current formula (17) is reduced to

I =
e

h

∑
σ

∫ eV

0

TLR(ε)dε, (21)

where the transmission coefficient TLR(ε) is defined as

TLR(ε) =
∑
δ�jn

ΓLΓRF
(n)
�j,δ(φ, φ1)

[ε − ε�j,δ(φ, φ1) − n�ω]2 + Γ 2
. (22)

TLR(ε) is the transmission coefficient of electrons trans-
porting from the right to the left lead. It is the contri-
bution of electrons tunneling through all of the channels
in the TCN. The electrodes are considered to be large
electron reservoirs which provide the possibility for elec-
trons to meet the transport through each of the channels.
The applied ac magnetic flux induces side-band due to
the absorption and emission of photons. The central TCN
acts as a scattering center, and the Breit-Wigner resonant
transport takes place as ε − ε�j,δ(φ, φ1) − n�ω = 0. The
evidence for the resonant transmissions has been observed
experimentally in SWCN system [3].

2.2 The time-dependent mesoscopic transport

In this subsection, we study the time-dependent meso-
scopic transport through the N-TCN-N system. We make
Fourier transformation over the time-dependent current
formula equation (10) to give the tunneling current of the
γth lead

Iγ(t) = 2eRe
∑
δj�σ

(
1

2π�

)2 ∫
dε1dε2 exp

[
− i

�
(ε1 − ε2)t

]

× [Gr
δj�(ε1, ε2)Σ

<
γ,δj�(ε2) + G<

δj�(ε1, ε2)Σ
a
γ,δj�(ε2 )], (23)

where GX
δj�(ε1, ε2) and ΣX

δj�(ε2) are the Green’s function
and self-energy in the energy representation. The self-
energy is determined by the Green’s functions of the leads
as ΣX

γ,δj�(ε) =
∑

k | Rγδ,j� |2 gX
γ,kσ(ε), (X ∈ {r, a, <}),

where g
r(a)
γ,kσ(ε) = 1/(ε−εγk±iη), (η → 0), and the Keldysh

Green’s function is g<
γ,kσ(ε) = 2πifγ(ε)δ(ε − εγk).

The time-dependent tunneling current expression
equation (10) now becomes

Iγ(t) = −2eIm
∑
δj�σ

(
1

2π�

)2 ∫
dε1dε2 exp

[
− i

�
(ε1 − ε2)t

]

× Γγ,δj�(ε2)
[
Gr

δj�(ε1, ε2)fγ(ε2) +
1
2
G<

δj�(ε1, ε2)
]

. (24)

The Dyson equation for the retarded Green’s function in
the energy representation is obtained from equation (12)

G̃r
δj�(ε, ε

′) = g̃r
δj�(ε, ε

′) +
1

2π�

∫
dε1g̃

r
δj�(ε, ε1)

× Σr
δj�(ε1)G̃

r
δj�(ε1, ε

′). (25)

By making Fourier transformation over equation (11), the
Green’s function of the TCN in the presence of ac flux can
be expressed by the expansion of G̃r

δj�(ε) as

GX
δj�(ε, ε

′) = 2π�

∑
mn

F
(mn)
�j,δ (φ, φ1)G̃X

δj�(ε − n�ω)

× δ[ε − ε′ − (n − m)�ω], (26)

for X ∈ {r, a, <}. The Fourier transformed Keldysh
Green’s function in equation (26) is

G̃<
δj�(ε − n�ω) = Σ<

δj�(ε) | G̃r
δj�(ε − n�ω) |2 . (27)

We consider the wide-band limit for the leads such that
the self-energies Σ

r(a)
δj� (ε) = ∓i

∑
γ Γγ/2, and Σ<

δj�(ε) =
i
∑

γ Γγfγ(ε). We are interested in the time-oscillating
tunneling current induced by the ac flux for general V .
Obviously, when V = 0, the time averaged current is zero
from equation (21). The retarded Green’s function G̃r

δj�(ε)
is given by equation (18).
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Substituting the Green’s functions given in equa-
tion (26) and wide-band limit self-energies into equa-
tion (24), we immediately obtain the time-dependent tun-
neling current in the presence of source-drain bias as

Iγ(t) =
e

h

∑
δj�σ

∑
mn

F̃
(mn)
�j,δ (φ, φ1){I(1)

γ,mn cos[Wnm(t)]

+ I(2)
γ,mn sin[Wnm(t)]}, (28)

where Wnm(t) = (n − m)ωt − (n + m)π/2 and I
(1)
γ,mn and

I
(2)
γ,mn are defined as

I(1)
γ,mn =

∑
γ′

∫
dεΓγΓγ′ | G̃r

δj�(ε − n�ω) |2

× {fγ [ε + (m − n)�ω] − fγ′(ε)},
I(2)
γ,mn = 2Γγ

∫
dεReG̃r

δj�(ε − n�ω)fγ [ε + (m − n)�ω].

In equation (28), we have defined the relation F
(mn)
�j,δ =

in+mF̃
(mn)
�j,δ . The time-averaged tunneling current given in

equation (17) corresponds to the case m = n in equa-
tion (28). One observes that although the time-averaged
tunneling current is zero when V = 0, we can have time-
oscillating current induced by the ac flux. However, the
tunneling current depends on the detailed structure of the
TCN and the applied magnetic field.

3 Numerical calculation

In this section, we perform the numerical calculations
on the tunneling current in the presence of ac magnetic
flux at zero temperature. Defining Ω = φ0/31/2πb =
5.3 × 10−4 T m, the dimensionless quantity α1 can be
expressed as α1 = Aω/Ω. The energy is an periodic
function of φ, and its magnitude depends on the mag-
nitude of ac field. In the numerical calculations, we take
G0 = 2e2/h as the measurement scale of conductance,
and I0 = 2eγ0/h = 2.35 × 10−4 A as the scale of tunnel-
ing current. We consider the symmetric situation where
the two leads are composed of the same material, and
they are equally coupled to the quantum TCN. So that
the line-widths are equal and energy independent. The
equally coupled symmetric system is considered by choos-
ing ΓL = ΓR = 0.001γ0. The frequency is scaled by the
quantity γ0/h = 7.36 × 1014 Hz.

The differential conductance dI/dV at zero tempera-
ture is given directly from equation (21) that

dI

dV
=

e2

h

∑
σ

TLR(eV ). (29)

Figure 2 is the differential conductance versus the source-
drain bias eV . The bias eV is scaled by γ0, which cor-
responds to 3.033V source-drain voltage. The frequency
of ac magnetic flux is f = 7.36 × 1012 Hz, which is in

Fig. 2. The differential conductance dI/dV versus source-
drain bias eV at zero temperature for φ = 0, α1 =
0.01, �ω = 0.01γ0. Diagrams (a), (b) (c) and (d) are associated
with the type I (5, 5;−120, 120), (10, 10;−480, 480), type II
(10, 10;−481, 481) and type III (10, 0;−480, 960) TCNs, re-
spectively.

the order of tera hertz. In the absence of ac component
magnetic flux, i.e., φ1 = 0, the metal-semiconductor phase
transition takes place in the type I and II TCNs by vary-
ing dc magnetic flux φ which has been documented in
the literatures [14,16,31,32]. The type III TCN is always
semiconductor with energy gap E ≈ 1.0 eV. The energy
gaps increase with increasing the ac magnetic flux φ1. In
the absence of magnetic flux, the energy gaps of type I
materials in Figures 2a and b are zero Eg = 0. The energy
gaps of the type II TCN in Figure 2c and type III TCN
in Figure 2d are about Eg ≈ 48 meV, and 1.0 eV, respec-
tively. As the ac magnetic flux is applied, the energy gaps
increase due to the two components of magnetic flux φ
and φ1. The photon energy with tera hertz frequency
f = 7.36 × 1012 Hz is about 30 meV. If the magnitude
of ac flux is small enough, i.e., α1 � 1, the energy gap
of armchair TCN is small. The zero-biased conductance
is small, but it becomes large by applying nonzero bias
voltage. There may exist tunneling current as eV �= 0 by
absorbing enough photons. For the type III TCN one ob-
serves that the energy gap is large Eg ≈ 1.0 eV. For such
material, the valence electron can not jump to the con-
ductance band by absorbing the photon energy with tera
hertz frequency. The resonant peaks reflect the discrete
energy levels in the TCNs, and the level spacings reduce
as the TCNs become large. As the ac flux is applied, some
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Fig. 3. The differential conductance dI/dV versus dc mag-
netic flux φ at zero temperature. Diagram (a) is the con-
ductance oscillation of TCNs when α1 = 0 and eV = 0
for (10, 10;−480, 480) (the solid curve) and (10, 10;−481, 481)
(the dotted curve). Diagram (b) is the conductance of TCNs
when α1 = 0.01, �ω = 0.01γ0 and eV = 0. The solid
and dotted curves are associated with (10, 10;−480, 480) and
(10, 10;−481, 481) TCNs, respectively. Diagram (c) is associ-
ated with the case for α1 = 0 and the source-drain voltage
V = 0.61 volt. The solid and dotted curves are related to the
type I (10, 10;−480, 480) and type II (10, 10;−481, 481) TCNs,
respectively.

of the resonant peaks are suppressed, and some of them
are enhanced to form photon-assisted resonant structure.

Figure 3 displays the zero-biased and source-drain
biased differential conductance versus dc magnetic flux
φ at zero temperature. The zero-biased conductance is
strongly dependent on the ac flux. However, the con-
ductance oscillation versus dc magnetic flux φ exhibits
the symmetric and periodic properties G(φ) = G(−φ)
and G(φ) = G(φ + nφ0), (n = 0,±1,±2, ...). For the
type I TCN as α1 = 0, the zero-biased conductance
resonates at φ = nφ0, where the metal-semiconductor
phase transition takes place. Away from these transi-
tion points, the conductance declines with the minimum
value G = 0.3G0. For the type II TCN, the resonances
of G(φ) occur at φ = (1/3 + n)φ0, (2/3 + n)φ0, where
the metal-semiconductor phase transition takes place (di-
agram (a)). This indicates that the Aharonov-Bohm mag-
netic flux controls the conductance from metal to semicon-
ductor changes periodically, and different types of TCN
possess different transport behavior. In the semiconduc-
tor regimes, we also have nonzero conductance, however
it is small. As the ac flux is applied, one observes that the
conductance is very small, and the oscillation behavior is

Fig. 4. The I-V characteristics of TCN with applied ac flux
as φ = 0. The dotted and solid curves are associated with
α1 = 0 and α1 = 3.8317, respectively. Diagrams (a) and
(b) correspond to the systems associated with (7,7;160,160)
and (7, 0;−160, 320) TCNs.

similar for type I TCN as the case for α1 = 0, but it is
quite different for the type II TCN as the case for α1 = 0
(diagram (b)). The two peaks in a period of type II TCN
unite to form one, and it has φ0/2 phase difference from
that of type I TCN. Since the ac flux component φ1 always
increases the energy gap of TCN [17], it is clear that the
double-peak oscillation in type II TCN only exists as the
energy gap is small. The differential conductance dI/dV
versus magnetic flux φ at zero temperature in the presence
of source-drain bias is given in diagram (c). The dI/dV is
sensitive to the applied voltage V and the types of TCN.
For the type I TCN, one observes that cluster oscillation
takes place, i.e., in one period φ0, there exist 4 peaks lo-
cated on the main hill, and they are symmetric about the
center of the hill.

The transport behavior is strongly dependent on the
magnitude α1 associated with the ac flux, since it makes
contribution to the quasi-energy ε�j,δ and weight func-
tion F

(n)
�j,δ. The weight function is determined by the Bessel

function Jn(Λ) with its variables Λ itself composed of
the Bessel function J1(α1) (see Eqs. (9)). Therefore, the
transmission coefficient becomes very complicated due to
the influence of an ac flux. However, when α1 is the zero
of Bessel function J1(α1), the transmission coefficient re-
duces to a very simple expression. The corresponding
behavior is obtained by taking n = 0, and F

(n)
�j,δ → 1

in TLR(ε). For this circumstance, the transport behavior is
similar to the case when the external ac flux is switched off.
However, the ac field still contributes to the quasi-energy
through the other Bessel functions. The ac flux increases
the energy gap which is obviously seen in Figure 4. Fig-
ures 4a and b show the current-voltage characteristics of
the type II armchair and type III zigzag TCNs system. As
the external ac flux is applied at the zero of J1(α) with
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Fig. 5. The I-V characteristics of TCN with applied ac flux
when φ = 0 for different α1. The solid and dashed curves
are related to the (7, 7;−160, 160) TCN when α1 = 0.1 and
α1 = 0.3, respectively. The dotted curve is associated with
(7, 0;−160, 320) TCN for α1 = 0.1.

α1 = 3.8317, the current appears obvious steps, and the
threshold increases. The tunneling current of the system
in the absence of ac flux is larger than that of the system
in the presence of ac flux in region 0 < eV < 1.84γ0, and
an intersection occurs at about eV = 1.84γ0.

We show the photon-assisted tunneling versus the
source-drain bias in the presence of ac magnetic flux in
Figure 5. As the magnitude α1 increases from 0.1 to 0.3,
the magnitude of tunneling current decreases. We also ob-
serve that the energy gap is increased by increasing α1

(the solid and dashed curves). The stair-like structure of
the current-voltage characteristics is associated with the
emission and absorption of photons. The steps of the cur-
rent are related to the quantum level of the TCN and side-
band caused by photon energy. For the time-averaged tun-
neling, the effect of the photon absorption and emission is
to split the energy level of TCN and modifies the current.
The tunneling current resonate with the local electron in
the quantum TCN, and with the applied photons. The
dotted curve shows the tunneling current of type III TCN
as α1 = 0.1. The magnitude of the current is larger than
the type II TCN, and the stairs are not obviously observed
compared with the type II TCN. The I-V curves are quite
different from the ones in the absence of ac component of
magnetic flux shown in reference [16]. We can also see that
the energy gap Eg increases by applying the ac magnetic
flux stated in reference [17].

The tunneling current versus dc magnetic flux φ is
presented in Figure 6 to show the oscillation and influ-
ence of the dc and ac flux components. Diagrams (a),
(b) are the tunneling currents through the type II
TCN (7, 7;−160, 160) as α1 = 0, and α1 = 3.8317, re-
spectively. Diagrams (c), (d) are the tunneling currents
through the type I TCN (7, 7;−159, 159) as α1 = 0, and
α1 = 3.8317, respectively. The currents exhibit periodic
behaviors with period φ0, but the magnitude of the os-
cillation and shape structure are different between type I

Fig. 6. The tunneling current I(φ) versus the magnetic
flux φ at eV = γ0. Diagrams (a) and (b) correspond to
the (7, 7;−160, 160) TCN with the parameter α1 = 0 and
α1 = 3.8317, respectively. Diagrams (c) and (d) correspond
to the (7, 7;−159, 159) TCN with the parameter α1 = 0 and
α1 = 3.8317, respectively.

and type II TCNs. The magnitude of the current is sup-
pressed by the applied ac flux. This is resulted from the
fact that the applied ac field increases the energy gap Eg

from the original one of TCN. The tunneling electrons
residing in the conductance band for the semiconducting
TCN are much less than those in the metallic TCN. The
modification of current is associated with the modification
of quasi-energy for each TCN. The modification of current
by the ac flux is obviously seen for the type I TCN. In the
absence of ac flux, the tunneling current oscillates with
two kinds of vibration structure. One kind of wave packet
is located at φ = nφ0, (n = 0,±1,±2, ...), and the other
one is located at φ = (n+1/2)φ0. As the ac flux is applied,
the current oscillation is modified to form only one vibra-
tion structure, with the modified wave packets located at
φ = nφ0.

For the symmetric system, the net tunneling is deter-
mined by I(t) = [IL(t) − IR(t)]/2, because the currents
coming out of the quantum TCN are cancelled exactly.
Therefore, the net tunneling current is derived as

I(t) =
e

h
Γ

∑
δj�σ

∑
mn

F̃
(mn)
�j,δ (φ, φ1){I(1)

n cos[Wnm(t)]

+ I(2)
n sin[Wnm(t)]}, (30)
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Fig. 7. The time-dependent current evolving periodically with
ωt for the (7, 7;−160, 160) TCN. The parameters are chosen as
eV = 0.8γ0, φ = 0. Diagrams (a) and (b) are associated with
α1 = 0.1 and 0.8, respectively.

where

I(1)
n = tan−1

[
µR + eV − ε�j,δ(φ, φ1) − n�ω

Γ

]

− tan−1

[
µR − ε�j,δ(φ, φ1) − n�ω

Γ

]
, (31)

I(2)
n =

1
2

ln
{

[µR + eV − ε�j,δ(φ, φ1) − n�ω]2 + Γ 2

[µR − ε�j,δ(φ, φ1) − n�ω]2 + Γ 2

}
.

(32)

The time-dependent tunneling current is induced by the
ac magnetic flux, and the net current is zero as the source-
drain bias is zero for the symmetric system. This can be
understood that the pumped current coming out of the
central TCN to the two leads are equal as eV = 0. The
oscillating current evolves periodically with ωt in the pe-
riod associated with the superposition of oscillation com-
ponents (n−m)ωt. We depict the time-oscillating current
versus ωt in Figure 7 to show the current evolution pro-
cedure. The current oscillation structure is observed to
have strong relation with the magnitude α1 of applied
ac field. In diagram (a), there exist two kinds of oscilla-
tion structure with the same period. A small oscillation
with split peaks is embedded in the valleys of the main
oscillation with larger single peaks. As α1 increases, the
oscillating current is suppressed, and the oscillating struc-
ture changes. Two kinds of oscillation merge to form the
time-evolving current with three peaks located on a main
peak. The time-dependent current is determined by the
resonant levels, the magnitude of the ac flux, and the fre-
quency. As α1 increases, the energy gap Eg increases, and
the weight function F�j,δ makes contribution to the cur-
rent significantly.

4 Concluding remarks

We have investigated the quantum transport through the
N-TCN-N systems threaded by an ac magnetic flux. The
tunneling current formula is derived by employing NGF
technique. The time-dependent and time-averaged cur-
rents are calculated. The frequency-dependent transmis-
sion coefficient Tγβ,n(ε) plays the central role for the coher-
ent transport. Because of the perturbation of ac magnetic
flux, the transmission coefficient appears very complicated
form by involving the field effect in the quasi-energy and
the weight function F�j,δ. This makes the tunneling be-
haviors complicated when the electron does not match
the quasi-energy of the TCN. The energy shift takes place
by applying the magnetic flux, and this shift arises from
both the dc and ac components of magnetic flux. The dc
magnetic flux φ induces the periodic variation of energy
gap, and the ac flux component always increases the en-
ergy gap. On the other hand, the time-dependent mag-
netic field produces side-band of quasi-energy, which pro-
vides novel channels for electrons to tunnel through. As
the photon energy is larger than the energy gap �ω > Eg,
the electrons in the valence band can jump to the conduc-
tance band at zero temperature, and the tunneling cur-
rent appears as eV > Eg/2 + n�ω, (n = 0,±1,±2, ...).
The tunneling is very simple for the resonant circumstance
as ε − ε�j,δ(φ, φ1) − n�ω = 0. The transport features are
different for different TCN systems as type I, II, and III
TCNs. The differential conductance and tunneling current
display obvious effect of ac flux by modifying the current
oscillation structures. However the modification is quite
simple as α1 is a zero of J1(α1). The time-dependent cur-
rent oscillates periodically with ωt. The detailed evolution
structure is the superposition of different components of
oscillating current branches. The magnitude of the ac flux
φ1 plays an important role for the photon absorption and
emission procedure, and it affects the tunneling current
considerably. Since the system is controlled by the exter-
nal magnetic flux, we can adjust the magnitudes of dc and
ac components of magnetic flux by varying φ, φ1 and ω
to obtain desired tunneling current. This system acts as a
magnetic flux controlled interference switching device.
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